
.J. Fluid M K ~ .  (1996). I . ( > / .  321, p p .  189-216 
Copyright 0 1996 Cambridge University Press 

189 

The influence of wall cooling on hypersonic 
boundary-layer separation and stability 

By K. W. CASSEL', A. I. R U B A N 2 ~ ~ ~  J. D. A. WALKER' 
I Department of Mechanical Engineering and Mechanics, Lehigh University, 

19 Memorial Drive West, Bethlehem, PA 18015, USA 
'Department of Mathematics, University of Manchester, Oxford Road, 

Manchester M13 9PL, UK 

(Received 3 April 1995 and in revised form 26 March 1996) 

The effect of wall cooling on hypersonic boundary-layer separation near a compression 
ramp is considered. Two cases are identified corresponding to the value of the average 
Mach number M across the upstream boundary layer approaching the compression 
ramp. The flow is referred to as supercritical for M > 1 and subcritical for &f < 1. The 
interaction is described by triple-deck theory, and numerical results are given for both 
cases for various ramp angles and levels of wall cooling. The effect of wall cooling on 
the absolute instability described recently by Cassel, Ruban & Walker (1995) for an 
uncooled wall is of particular interest; a stabilizing effect is observed for supercritical 
boundary layers, but a strong destabilizing influence occurs in the subcritical case. 
Wall cooling also influences the location and size of the separated region. For 
supercritical flow, progressive wall cooling reduces the size of the recirculating-flow 
region, the separation point moves downstream, and upstream influence is diminished. 
In contrast for the subcritical case downstream influence is reduced with increased 
cooling. In either situation, a sufficient level of wall cooling eliminates separation 
altogether for the ramp angles considered. The present numerical results closely 
confirm the strong wall cooling theory of Kerimbekov, Ruban & Walker (1994). 

1. Introduction 
Triple-deck theory has provided a clear understanding of the viscous-inviscid 

interactions that occur in a wide variety of flows. The supersonic triple-deck problem 
was first formulated by Stewartson & Williams (1969) and Neiland (1969), who 
showed how the presence of a disturbance within a supersonic boundary layer could 
be transmitted upstream. Triple-deck analysis has subsequently been applied to 
many problems spanning the full range of flow speeds from subsonic to hypersonic. 
The formulation was subsequently extended to hypersonic flow with significant wall 
cooling by Neiland (1973) and later by Brown, Cheng & Lee (1990). Wall cooling 
is often necessary in hypersonic flow applications in order to combat the high 
temperatures generated near the surface (Towend 1991 ; Walberg 1991). 

In this study, the problem depicted schematically in figure 1 is of interest, wherein 
a multilayer structure develops as a hypersonic boundary layer encounters a com- 
pression ramp having an asymptotically small ramp angle. Inclusion of the effects of 
significant wall cooling brings about three primary changes in the hypersonic triple- 
deck formulation as compared to the classical supersonic problem. The first effect is 
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FIGURE 1. Schematic of the triple-deck structure for hypersonic flow over a cold wall near a 
compression ramp (not to scale). 

an overall reduction in the length scales of the triple-deck structure as the surface 
is progressively cooled (see 92). Secondly, as illustrated in figure 1, the approach 
boundary layer upstream of the interaction region bifurcates into two layers; now 
an inner wall layer is required in order to adjust the relatively high boundary-layer 
temperatures to that of the cold surface. The thickness of the upstream wall layer 
(region a') is much greater than that of the viscous sublayer in the interaction region 
(region I), and this necessitates an intermediate layer (region I,) between the conven- 
tional viscous sublayer (region I) and the main deck (region 11). The intermediate 
layer is essentially a continuation of the upstream inner wall layer into the interaction 
region and communicates changes between the viscous sublayer and the main and 
upper decks; however, it does not contribute to leading order to the displacement 
effect of the boundary layer (Kerimbekov, Ruban & Walker 1994). 

The third and most significant effect of wall cooling consists of a reduction in 
both the longitudinal extent of the interaction region and the displacement thickness 
of the viscous sublayer; the former change may come into play even when the 
mainstream Mach number M ,  is finite. As shown by Seddougui, Bowles & Smith 
(1991), wall cooling in subsonic and supersonic flows, where M ,  is 0(1), can shrink 
the interaction region to such an extent that the characteristic longitudinal length 
becomes comparable to the thickness of the unperturbed upstream boundary layer; 
consequently, the upper deck of the triple-deck structure merges with the middle 
deck and pressure variations across the main portion of the boundary layer become 
significant. However, such a merger is not possible in a hypersonic flow ( M ,  9 1) since, 
even for extremely low wall temperatures, the longitudinal extent of the interaction 
region is M ,  times larger than the thickness of the upstream boundary layer. At 
the same time, this does not mean that the interaction process remains unaffected; 
indeed, along with the reduction in the displacement thickness contribution due to the 
viscous sublayer, there is a corresponding rise in the relative contribution from the 
main deck and both become important to leading order once the wall temperature is 
sufficiently low. As shown by Neiland (1973), the displacement thickness attributable 
to the main deck is proportional to the pressure rise induced by the boundary layer. If 
the average Mach number M across the upstream boundary layer is less than one, a 
pressure increase leads to boundary-layer thickening in the interaction region; on the 
other hand, if A? > 1, a pressure increase leads to a decrease in the boundary-layer 
thickness. The former case was referred to as subcritical and the latter as supercritical 
by Neiland (1973) because of an analogous behaviour for subsonic and supersonic 
mainstream flows, respectively. 

If 6,s and 6, denote the contributions to displacement thickness in the interaction 
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zone associated with the sublayer and main deck, respectively, it is evident that there 
are at least three regimes of interest, namely (1) 6, + 6,; (2) 6, 6,, and (3) 6,s 4 6,. 
Regime 1 corresponds to situations with moderate wall temperatures (such as the 
adiabatic wall temperature), and from this regime each of regimes 2 and 3 is reached 
in turn by progressively lowering the temperature of the wall. The first regime is 
described by the classical triple-deck formulation for supersonic flow (Stewartson & 
Williams 1969; Neiland 1969), and numerical solutions have been obtained previously 
by Rizzetta, Burggraf & Jenson (1978), Ruban (1978), Smith & Khorrami (1991) and 
Cassel, Ruban & Walker (1995) for a boundary layer encountering a compression 
ramp with various small ramp angles. These results show that a separation zone 
develops near the corner for ramp angles greater than a certain critical value. As 
the ramp angle is increased, the extent of the separation region grows, and a plateau 
forms in the pressure distribution downstream of the separation point. Cassel et al. 
(1995) show that at a second (and larger) critical ramp angle, a streamwise velocity 
profile develops an inflection point in the recirculation region and the boundary-layer 
flow eventually becomes unstable; the instability is manifest in the form of a wave 
packet which grows but remains stationary near the corner for all ramp angles above 
the second critical value. Note that the instability was only observed when sufficiently 
refined numerical grids were used. 

The third regime is characterized by very low wall temperatures where the 
displacement-thickness contribution due to the main deck is dominant. This situ- 
ation has been considered recently by Kerimbekov et al. (1994) for subcritical and 
supercritical boundary layers that encounter a compression ramp. For the limiting 
case of strong supercritical wall cooling, it was found that there are no disturbances 
upstream of the corner, and separation can only occur on the inclined portion of 
the ramp; furthermore, the boundary layer on the ramp exhibits marginal separation 
behaviour similar to that which is known to occur near the leading edge of thin 
airfoils at a critical angle of attack (Ruban 1981, 1982 and Stewartson, Smith & 
Kaups 1982). On the other hand, for strong subcritical wall cooling, the pressure is 
almost constant downstream of the corner and separation can only occur upstream 
of the corner. For this case, a Goldstein (1948) singularity occurs at separation, 
but the theory of Smith & Daniels (1981) may be utilized to continue the solution 
downstream of the separation point. Further details of the strong wall cooling case 
are described in 53.  

The present calculations were carried out in regime 2 (moderately cooled walls) in 
order to provide a bridge between existing theories for moderate wall temperatures 
(regime 1) and strongly cooled walls (regime 3) .  This parameter range will subse- 
quently be defined more precisely in terms of the wall temperature. The present 
results for the compression ramp show that wall cooling has a significant effect on 
both separation and the instability observed by Cassel et al. (1995). Wall cooling was 
found to either stabilize or destabilize the flow depending on whether the flow was 
supercritical or subcritical, respectively. In addition, for stable flows, wall cooling was 
found to limit either the upstream or the downstream propagation of disturbances 
and thereby have a dramatic effect on both the location and size of the recirculation 
zone. Finally, the present numerical results were found to blend smoothly with those 
in regime 3 predicted by the analytic theory of Kerimbekov et al. (1994) for strong 
wall cooling. 

The hypersonic formulation with wall cooling used in the present investigation 
follows the seminal work of Neiland (1973), wherein the terms ‘supercritical’, ‘trans- 
critical’ and ‘subcritical’ connoted the state of the upstream boundary layer for 
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M > 1, a - 1 and M < 1, respectively. More recently, Brown et al. (1990) have 
considered the problem using a somewhat different approach; they introduced their 
own terminology in which they used the aforementioned adjectives to delineate the 
three temperature regimes that have been nominally identified here as 1, 2 and 3, 
respectively. In the Appendix, a brief comparison of the two approaches is given. In 
this paper, Neiland’s (1973) terminology will be used throughout. The present results 
for supercritical boundary layers compare very well with those of Brown et al. (1990) 
who sought steady solutions in regime 2, but did not consider the subcritical case. 
For strong wall cooling, however, the results obtained by Brown et al. (1990) do not 
exhibit the proper behaviour in that the pressure shows continual growth downstream 
instead of approaching a constant plateau. In contrast, the present results behave as 
expected and also confirm the scalings of Kerimbekov et al. (1994) as regime 2 blends 
into regime 3. The reasons for the discrepancy with Brown et al. (1990) are described 
in Appendix B of Kerimbekov et al. (1994). 

2. Hypersonic triple deck with wall cooling 
The two-dimensional hypersonic triple-deck formulation for a flat-plate boundary 

layer with wall cooling was first considered by Neiland (1973) and will be investigated 
here. Consider a plate of length L which is oriented parallel to the flow of an ideal 
compressible gas having speed U,, density p,,  enthalpy h, and pressure pa. The 
specific heat ratio y is taken to be constant. A semi-infinite plate is joined to the 
downstream end of the first plate and inclined at a small angle a’ to the flow direction, 
thereby forming a compression ramp on the upper surface of the composite body. 
Define flow variables such that lengths, velocities, the pressure, density, enthalpy and 
absolute viscosity are made dimensionless with respect to L, U,, p,UL, p,, U i ,  and 
pO, respectively. Here, ,uO denotes the viscosity evaluated at a reference enthalpy of 
U i .  The viscosity is taken to be a function of temperature alone and given by the 
power law p’ = (h’)”, where n is a positive constant. Here, and throughout, the prime 
will be used to denote unscaled dimensionless variables. The Reynolds number Re0 
and upstream Mach number M ,  are defined by 

-112 

, M ,  = U,  (E) Re0 = ____ 2 
P a  U,L 

PO 
(2.la, b )  

and both are assumed to be large, but such that the hypersonic viscous interaction 
parameter x is small, namely 

x = MiRe,’“ < 1. (2.2) 
This condition requires that the corner of the ramp be located in a region of weak 
global viscous interaction. 

As discussed by Neiland (1973) and Kerimbekov et al. (1994), the upstream bound- 
ary layer bifurcates into two layers when the wall temperature is sufficiently low. The 
main part of the boundary layer is denoted as region p in figure 1, and the streamwise 
velocity u’ and enthalpy h’ in this region are functions of x’ and the scaled normal 
variable Y = M;‘Re;l2y’. In addition, the density p’ = Mi2R(x ’ ,  Y )  is small, where 
the scaled density function R is O( 1). The mainstream enthalpy (non-dimensionalized 
by U;) is 0 ( M i 2 )  as M ,  -+ 00, and consequently the matching conditions to the 
mainstream are 

u’ -+ 1, h’ +. 0 as Y -+ 6(x’), (2.3a, b )  
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where ci( u’) denotes the upstream boundary-layer thickness. At the plate surface 

(2.4a, b )  

where h:, denotes the dimensional wall enthalpy. The quantity g,,, is called the 
temperature factor, and the physical situation of interest here is when the wall is cold 
in the sense that g,. 4 1. In general, the dependent variables in layer are such that 

> (2.5a-c) 

as Y -+ 0 (Kerimbekov et al. 1994), and consequently the solution is not uniformly 
valid. An inner layer (denoted as x* in figure 1) is required in order to adjust the 
solution for h‘ to condition (2,4b), as well as the scaled density function R to a finite 
value on the wall. In  region M*, the solution is a function of x’ and the scaled variable 
P = M;1ReA’2g;(’z+1)y’ = g;In+l)Y, while u’ and h’ are O(g,v) with p’ = 0(MG2g;’). 
As shown by Kerimbekov et al. (1994), the solution in region a is such that 

u’ -+ gwj.?, /I’ -+ g,. as ? ---f 0, (2.6a, b )  

as the interaction region is approached (i.e. x’ --f 1). Here, A: is an O( 1) constant whose 
value must be determined from a global solution of the upstream boundary-layer flow. 

In the vicinity of the compression ramp (or equivalently some other streamwise 
disturbance), a multi-layer structure develops as shown in figure 1. Regions I, and 
I1 are simply continuations of the regions a” and p in the upstream boundary layer, 
respectively, while region IT1 constitutes a region of inviscid potential flow above the 
boundary layer. When the ramp angle M’ is O(Reo1l4) ,  a nonlinear response to the 
changes in pressure provoked by the Compression ramp occurs in the sublayer I, while 
perturbations to the flow in regions I,, I1 and 111 remain linear. The scalings and the 
nature of the solution in each of these regions have been described by Kerimbekov 
et al. (1994), and the lower-deck problem depends on the following scaled variables: 

(2.7a) 

(2.7b) 

(2 .7~)  

(2.7d) 

p’ - 1 == yje1/2M-lRe-’/4 a 0 P ( X > t ) ?  (2.7e) 

u~ ‘v yl/(n+ll h’ y l / l n + l )  R h, y-l/(n+l) 

- 1 = (,, - 1)1/2~-5/4M~zgl:+1/zRe03/Xx, 

y’ = ( y  - 1 ) 1 12 ] . -3/4 M3/2g$ 112 0 ( ,Y - f (x)) ,  
u’ = (7 - 1)1/2i.‘i4M~f’g!!2ReOl/XU(X,y, t ) ,  

u’ = (11 - l)1i2R3!4M,~i2g~!2Re,3’8(v(x,y, t )  - df ldx}, 

t’ = jl-3/2M,gz,Rei1i4t. (2.77) 
Here, the body contour is defined by y = f ( x ) ,  and a Prandtl transposition has been 
incorporated in equations (2.7). It can be shown (Kerimbekov et al. 1994) that in the 
lower deck, the density p’ = M;’g;’(y - l)-’ and the enthalpy h’ = g,,, are constant, 
and the remaining dependent variables satisfy the triple-deck problem 

au au d u  ap P U  au zu 
z t  ax (;y ax dy*’ 2x ~7~ 
- + u- + 21, = -- + __ - + - = 0 ,  (2.8a, b )  

with the interaction law 
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u = v = O  at y = O ,  

u + y +  ... as x+ -a, 

u - y + A(x,t) + ... as y + co. 
In equation (2.9), the parameters S and 2' are defined by 

(2.10a) 

(2.10b) 

(2.10c) 

(2.11a, b )  

where 60 is the boundary-layer thickness, and Mo( Y ) is the Mach number distribution 
across the boundary layer just upstream of the interaction region. Finally, the ramp 
angle is given by 

a' = A'/2Re,''4c(. (2.12) 
If the average upstream Mach number is less than one, 2 > 0, and this is called 
the subcritical case. On the other hand, if the average upstream Mach number is 
greater than one, then 2 < 0, and this is referred to as the supercritical case. The 
terminology 'cold wall' is utilized in the present context to imply that the parameter S 
is U (  1) which can occur only when the temperature factor g, 4 1. Note from equation 
(2.9) that when S 2  --+ 0, corresponding to moderate to high wall temperatures, 
the formulation reduces to the classical triple-deck problem for supersonic flows 
(Stewartson & Williams 1969; Neiland 1969). 

Tutty & Cowley (1986) have discussed the possibility of physical instabilities 
occurring in the unsteady triple-deck formulation, and Cassel et al. (1995) have 
shown that an instability is present in the supersonic triple-deck problem (as well as 
the hypersonic case) for moderate wall temperatures. This instability was shown to 
develop within the region of reversed flow that develops near the corner once the 
ramp angle exceeds a certain critical value. For ramp angles above the critical value, 
inflection points form in the velocity profiles near the corner and this appears to lead 
to an absolute instability in the form of a wave packet that ultimately forms near the 
corner but remains stationary. Following the procedure described by Tutty & Cowley 
(1986), infinitesimal short-wave disturbances of the form 

(2.13) 

are assumed, where E 4 1, E is large and real, and c = c, + ici is the complex wave 
speed; if ci > 0, any small disturbance will grow and cause an instability. Using the 
procedures described by Tutty & Cowley (1986) and Cassel (1993), it is readily shown 
that a necessary and sufficient condition for instability is 

Ul(X,  Y ,  t )  + ..., i(Ex-Ect) 4% Y ,  t )  = uo(x, Y ,  t )  + Ee 

(2.14) 

For a known base velocity profile uo, this provides an eigenvalue relation for the 
complex wave speed for a given level of wall cooling S and a given type of upstream 
velocity profile characterized by 2. As discussed by Tutty & Cowley (1986) and 
Cassel et al. (1995), when S = 0, corresponding to either the supersonic or hypersonic 
triple deck without wall cooling, Rayleigh's and Fj~rtoft's theorems are necessary 
conditions for a high-wavenumber instability. However, when S 2  # 0, it is only 
possible to show from equation (2.14) that an instability can occur if d2uo/dy2 > 0 for 
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at least part of the interval 0 < y < co; this condition replaces Rayleigh’s theorem in 
the cold wall case but is not considered to be especially useful since it lacks specificity. 
In addition, it does not appear that there is a condition for the cold wall case which 
is analogous to Fjerrtoft’s theorem. 

3. Strong wall cooling singularities 
As described by Kerimbekov et al. (1994), the three temperature regimes depend 

on the magnitude of the wall temperature factor g,,, and hence S, or equivalently the 
Neiland number defined by 

The three regimes are defined by: ( 1 )  N Q 1 or g,$ + x ~ / ( ~ ~ + ~ ) .  , ( 2 )  N = 0 ( 1 )  or 
g, - x ~ / ( ~ ” + ’ J  and ( 3 )  N B 1 or g, 4 x ~ / ( ~ ~ + ~ ) .  Kerimbekov et al. (1994) considered the 
third regime wherein the wall is cooled so strongly that the displacement effect due to 
the main deck dominates that of the viscous sublayer, which ultimately becomes too 
small to influence the leading-order external pressure distribution (Neiland & Socolov 
1975). Such interactions are therefore inviscid-inviscid between the main deck and 
the outer flow. The Neiland number N represents the ratio of the contributions to the 
displacement thickness due to the main deck and the viscous sublayer. For N -+ co, 
a rescaling of variables in the system is necessary according to 

x = N3/4X, y = N’I4jj, (3.2a, b )  

( 3 . 2 ~ - e )  

N = (s 191)~/~. (3.1) 

114- - - u = N u(x,  y ) ,  2) = N-”4v(x,)?), p = N1/2P(X), 

A = N’/4A(X), f = N5’4f(X). ( 3 . V  9 8)  
Defining a streamfunction by ii = a,p/dy, 9 = -d@/&, the formulation in equations 
(2.8)-(2.10) for steady flow becomes 

with the interaction law 

and boundary conditions 

(3.3) 

(3.5a) 

I$ - ij2 + A(X)j  + ... as p ---f co, and as 3 ---f -co. (3.5b) 
The surface geometry of the compression ramp is given by 

0, x < o  
> (3.6) 

- -  { ax, x > o  
f(2) = 

where the ramp angle (cf. equation (2.12)) is defined by ii = N - 1 / 2 ~  and ii is assumed 
to be O(1).  Note that in these variables the interaction problem depends only on 
the magnitude of N and the sign of 9. It is evident from equation (3.4) that as N 
becomes large, the first term in the interaction law, representing the contribution to 
the displacement thickness due to the viscous sublayer, becomes small. 
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Kerimbekov et al. (1994) considered solutions of the system (3.3)-(3.6) for both 
the subcritical (2 > 0) and supercritical (2 < 0) wall cooling cases. The form of 
the interaction law (3.4) suggests the following expansions for the streamfunction, 
pressure distribution and displacement function: 

Y ( Z , j )  = yo(x,jq + N-lyl(%jj) + ..., ( 3 . 7 ~ )  

(3.7b7 c)  
and substitution into the interaction law (3.4) gives the following equation for the 

p(x) = Po(.?) + N-'p1(x) + ..., A(X) = A,@)  + N-'Al(x)  + ...) 
leading-order pressure term : 

apo 
ax po = sgn(2)- + 6iH(x), 

where H ( Z )  is the Heaviside function. For a supercritical 
the solution of equation (3.8) is 

X < O  
Po = { ;tl -e-"), x > 0 ) 

while for a subcritical boundary layer (2 > 0), 

= { !ex, x < o 
a, x > 0. 

Consequently, for the supercritical case (3.9), there are no 

(3.8) 

boundary layer (2 < 0), 

(3.9) 

(3.10) 

disturbances upstream of 
3 = 0, and the pressure starts to increase only at the corner toward a as 2 .+ 00. On 
the other hand, for the subcritical case (3.10), the pressure increases from zero far 
upstream to a at the corner and is then constant along the ramp itself. Substituting 
equations (3.7a, b) into the momentum equation (3 .3)  in the viscous sublayer gives 

and the boundary conditions are 

8YO 
a j  yo=--=O at j = O ,  

(3.11) 

(3.12~) 

yo - i j 2  + Ao(Z)j + ... as j + co, and as x +. -a. (3.12b) 

Since the problem (3.1 1)7(3. 12) is a classical boundary-layer problem with prescribed 
pressure gradient given by either of equations (3.9) or (3.10), the solutions may be 
obtained using a conventional numerical procedure starting from the initial condition 
&po/dy -+ j as X -+ -a and marching in the positive %direction. Such solutions 
were obtained by Kerimbekov et al. (1994) for the supercritical pressure distribution 
(3.9) and were found to exhibit the phenomenon of marginal separation for increasing 
ramp angle a. For each 8, there is a minimum in wall shear, which decreases with 
increasing ramp angle until eventually a zero is reached at a critical ramp angle 
6io = 0.7548 at 3 = Xo = 0.5. This type of behaviour also occurs in the boundary layer 
near the leading edge of thin airfoils at some critical angle of attack. The marginal 
separation theory of Stewartson et al. (1982) and Ruban (1981) for the airfoil problem 
shows that a singularity develops at the point of zero wall shear at 20 as the critical 
angle is approached. However, the singularity is weak in the sense that solutions of 
the boundary-layer equations may be continued downstream of 20. A local interaction 
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region forms near Xo in order to relieve the singularity (Stewartson et al. 1982; Ruban 
1982). Kerimbekov et al. (1994) show that marginal separation theory applies to the 
supercritical wall cooling case for large Neiland number. Numerical solutions for 
large, but finite, values of N will be described in $6 and compared with the analytical 
results for N -+ x. 

For the subcritical wall cooling case, the solution of equation (3.11) subject to the 
prescribed pressure distribution (3.10) exhibits a Goldstein (1948) singularity at a point 
of zero wall shear on the flat surface upstream of the corner, for a sufficiently high 
ramp angle ti. However, the singularity can be removed by a series of regions which 
have successively shorter streamwise length scales allowing for a smooth transition 
into a separated region downstream (Smith & Daniels 1981). Physically, this type of 
situation is sometimes described as a compensation regime in which the combination 
of the surface shape and the displacement thickness of the boundary layer cancel 
such that the streamlines at the outer edge of the boundary layer are horizontal. 

4. Formulation 
In the present investigation, wall temperatures in regime 2, for which N = 0(1), 

are of interest, and the problem considered is governed by equations (2.8)-(2.10). 
As described by Cassel et al. (1995), an equation for the shear stress t = du /dy  
may be obtained by differentiating equation ( 2 . 8 ~ )  with respect to y .  In addition, 
a streamfunction is defined by u = & p / d y ,  u = -dyi/dx and is related to t by 
d 2 w / 2 y 2  = z. The displacement function A(x,  t )  in equation (2.10~) is given by 

1' 
P 

A(x ,  t )  = lim(u - y )  = lim (t - l)dy, 
I + X  v - 5  J 

0 

and by differentiation of the interaction law using the procedures discussed by Cassel 
et al. (1995), it is easily shown that 

In this manner the interaction is expressed in terms of the wall shear. Note that an 
equation for the wall shear stress has also been used extensively by Burggraf & Duck 
(1982) and Duck (1987). 

It is convenient to transform the infinite flow domain into a finite rectangular 
domain using the transformations 

2 i = - arctan , 9 = - arctan 
n (3 n 

(4.3a, b )  

Here the parameters a and b determine the level of grid packing in physical space 
with smaller values of a and b implying a greater concentration of grid points near 
the ramp corner at x = 0 and the surface at y = 0, respectively. It is easily shown 
that the interaction problem in these variables is 

(4.4) 

for z, where r(i) = [l + cos(n[)] /n. The boundary conditions (2.10b,c) reduce to 

~ - + l  as i - + + l ,  z - t l  as 9-1, (4.5a, b )  
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and the interaction law (4.2) becomes 
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The 

The 

equations relating the streamfunction and shear stress are 

velocity components are obtained from 

(4.7a, b )  

(4.8~1, b )  

5. Numerical methods 
The algorithm described by Cassel et al. (1995) was extended here to include the 

effects of wall cooling, and only a brief summary of the approach is given here. 
Steady-state solutions for each value of SLY and the scaled ramp angle M were sought 
as the large-time limit of an unsteady integration initiated from the flat-plate solution 
z = 1 at t = 0. A solution to the momentum equation (4.4) and the interaction law 
(4.6) is required at each time step; the streamfunction and u were then obtained from 
integration of equation (4 .7~)  with zi being evaluated from equation (4.8b). Let y,,, 
denote the finite value of y at which the vertical extent of the domain was truncated. 
The 2 interval was divided into a uniform mesh having I - 1 subintervals of length 
A?, and the $ interval from zero to jmax was divided into a uniform mesh having 
J - 1 subintervals of length A j .  The dependent variables evaluated at the point (a,, j , )  
at the current time step (where the solution is sought) are denoted by subscripts i 
and j .  In the numerical approximations to equation (4.4) described by Cassel et al. 
(1995), the time derivative is approximated by a simple backward difference, while 
a z / d j  and d 2 z / d j 2  are represented by conventional central differences; udz/dk and zi 
are approximated at the previous time step, where the solution is known, and 87 /82  
is represented by a second-order upwind-downwind formula that is dependent on the 
sign of u. Thus the method is second-order accurate in space but first-order accurate 
in time. These approximations lead to a formula for z,,~ at each time step of the form 

TI,] = CI,]7,,1 + B,,,, j = 2, *.., J ,  (5.1) 
where the arrays C,, and B,, are evaluated using recursion relations given by Cassel 
et at. (1995). Consequently, the shear stress z,,] may be determined at time t once the 
wall shear is known. 

To obtain the shear stress on the wall, discretization of the interaction law (4.6) 
gives a tridiagonal system for the wall shear stress, in a manner similar to that 
described by Cassel et al. (1995), which is of the form 

(5.2) 
_ _  
c, zI-l,l + E , z , , ~  + ~,+z ,+l , l  = a,, i = 2, ..., I - 1, 

where 

(5.3a) 
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(5.3c) 

The coefficients M ,  and N ,  are defined in terms of the arrays C,, and B,, in equations 
(4.13) of Cassel et al. (1995). The tridiagonal system (5.2), (5.3) was solved for 
the wall shear T , , ~  using the Thomas algorithm subject to the boundary conditions 
~ 1 , ~  = T ~ , ~  = 1, and the shear stress throughout the two-dimensional domain was then 
computed from equation (5.1) for i = 2, ..., 1 - 1. The streamfunction y and u were 
then obtained by integration of equation ( 4 . 7 ~ )  using the trapezoidal rule, and 2) was 
calculated using a central difference approximation to equation (4.8b). 

The pressure distribution may also be computed at any desired time from the 
wall shear stress distribution. The pressure equation is obtained from substitution of 
equations (4.1) and (4.2) into the original interaction law (2.9) giving 

Using second-order central difference approximations for the %-derivatives and ap- 
proximating the integral in equation (5.4) as described by Cassel et al. (1995) yields 
a tridiagonal system for the pressure distribution of the form 

El-pl-l + T,p ,  + Z.,+p,+l = a,, i = 2, ...) I - 1, (5 .5)  

where the coefficients are 

(5 .64  b )  

df r(2.) Ni+lTi+l,l + Mi+t - Ni-lTi-l,I - Mi-1 
262 

d .  - _ _  + 2 
dx a I -  

and the coefficients Mi and Ni are as defined by Cassel et al. (1995). For a general 
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surface shape f (x), the boundary conditions are 

P1 = - 7 P I = -  d f l  , :: I/_-a dx x + + x  
(5.7) 

and in particular for the compression ramp p1 = 0, pr = a, where a is the scaled 
ramp angle. 

As described by Cassel et al. (1995), a von Neumann stability analysis shows that 
in order for the numerical solution to remain stable, the time step must be such that 

From the condition (2.10~) at the outer edge of the viscous sublayer, the maximum 
streamwise velocity u,,, is approximately equal to the normal coordinate y,,, at 
which the domain is truncated, and therefore the stability condition (5.8) significantly 
limits the values of the time step which may be used in order to avoid numerical 
instability. In practice, the time step was selected to be 50% or less than the restriction 
implied by equation (5.8) 

6. Calculated results 
In this section detailed numerical solutions of the hypersonic triple deck with wall 

cooling will be described for the compression ramp geometry, which was defined by 

f(x) = +a [x + (x2 + r2)l I2]  , 

in order to keep the surface shape smooth. Here, a is the scaled downstream ramp 
angle and r is the rounding parameter. Calculations were carried out for a range 
of values of r, but all results shown here are for r = 0.5; this value was found to 
eliminate the difficulties at the corner which result for the true compression ramp 
(r = 0) while minimizing the effect on the overall results. As in Cassel et al. (1995), 
the vertical extent of the computational domain was chosen to be y,,, = 50, which 
was determined to be sufficiently large to ensure that there is no significant influence 
on the calculated solutions. 

Steady-state solutions were obtained as the large time limit of unsteady calculations 
for various ramp angles and levels of wall cooling. The initial condition corresponds 
to a flat plate ( M  = 0) with u = y;  then at t = 0, the ramp angle CI was impulsively 
adjusted to its final value. The unsteady numerical calculation was terminated at 
some large time when & / d t  was less than 5 x at each mesh point along the wall 
(where the shear stress undergoes the most change). 

The effects of wall cooling on the separation and stability characteristics observed 
by Cassel et al. (1995) are of particular interest. Here, the term moderately cooled 
wall means that the wall temperature factor g ,  is small, but that the parameter S, 
defined in equation (2.11a), is O(1). As g, increases, S + 0, and the moderate wall 
temperature regime 1 is reached. On the other hand, for very small values of g,, 
S -+ co, defining the strong wall cooling case considered by Kerimbekov et al. (1994). 
In addition to the magnitude of S, the hypersonic problem is characterized by the 
sign of the integral 2’ in equation (2.11b). For hypersonic flows, the supercritical 
case is expected to be more common when the velocity distribution approaching the 
corner is described by the flat-plate Blasius solution. Indeed, it can be shown, for 
example, that when viscosity depends linearly on temperature ( n  = 1) and for Prandtl 
number P r  = 1, the boundary layer on a flat plate is supercritical for cases having 
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FIGURE 2. Numerical solutions for CI = 1.0 with various levels of wall cooling; S2? = -1O.O,..., 10.0 
in increments of 2.5: no cooling effect (- - - -), subcritical boundary layer ( -  - - -), and supercritical 
boundary layer (-). (a)  Pressure p ,  ( h )  wall shear stress 7, .  

specific heat ratio y < 2.26 and subcritical for y > 2.26 (C. N. Zhikharev 1993, private 
communication). However, it should be emphasized that the present theory is not 
restricted to situations where the approach flow is Blasius and more general upstream 
conditions can give rise to a subcritical boundary layer in air (y = 1.4). An interesting 
possibility arises when the approach flow has 9 = 0, for which the effects of wall 
cooling are negated (even for S = O(1)); this case has been referred to as transcritical 
by Neiland (1987). 

In the present study, situations where S 2  = O(1) are of interest, and results were 
obtained for both subcritical and supercritical cases. A series of mesh sizes were used 
for each case as a check on the accuracy. Unless stated otherwise, all results shown 
were obtained on a mesh defined by I = 201, J = 101, and a = b = 10.0 except for 
cases with a = 1.0, where the mesh was defined by I = 101, J = 51 and a = b = 5.0. 
A comprehensive set of numerical resuIts with various levels of wall cooling and for 
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FIGURE 3. As figure 2 but for c( = 2.0 (cases not shown were unstable). 

a series of ramp angles is shown in figures 2-10. Figures 2-6 show pressure and wall 
shear distributions for a range of both subcritical and supercritical S 2  for CI = 1.0, 
2.0, 3.0, 4.0 and 5.0, respectively. Note that for CI 2 2.0, some cases have been omitted; 
these are cases for which the solutions became unstable in the form of a wave packet 
that developed near the corner as described by Cassel et al. (1995). Streamlines are 
shown for ramp angles CI = 3.0 and 5.0 in figures 7 and 8, respectively, for a series 
of wall cooling cases in the supercritical regime involving separation. In addition, 
streamlines for a particular case with CI = 4.0 and S 2  = -12.5 are shown in figure 
9. The separation and stability characteristics of all the solutions represented in the 
above-mentioned figures are summarized in figure 10. 

One obvious effect of wall cooling which is exhibited in the pressure and wall shear 
distributions for all ramp angles shown (see figures 2-6) is an inhibition of either 
upstream or downstream influence as the wall is cooled. For subcritical boundary 
layers, increased wall cooling reduces the region of influence downstream of the 
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FIGURE 4. As figure 2 but for c! = 3.0; S Y  = -1O.O,..., 15.0 in increments of 2.5 
(cases not shown were unstable). 

compression ramp. This may be observed as a progressive decrease (as the wall 
is cooled) in the distance downstream of the corner where the pressure achieves 
its downstream asymptotic value; similarly, the wall shear tends more rapidly to 
its downstream value as the wall is cooled. For supercritical boundary layers, the 
opposite behaviour is observed. As the wall is cooled, the upstream influence of the 
ramp is reduced dramatically, and the point at which the pressure and wall shear 
begin to rise and fall, respectively, from their upstream values moves downstream 
into the corner. This reduction in upstream influence as the wall is cooled in the 
supercritical case has been observed experimentally by Lewis, Kubota & Lees (1968). 
In the extreme case of very large S 191, Kerimbekov et al. (1994) show that there are 
no disturbances upstream of the corner in the supercritical case and none downstream 
of the corner for subcritical flow. In cases where no separation occurs (see figures 2b 
and 3b), the wall shear reveals an additional feature. For subcritical boundary layers, 
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FIGURE 5.  As figure 2 but for CI = 4.0; S Y  = -15.0,...,22.5 in increments of 2.5 
(cases not shown were unstable). 

increases in wall cooling increase the magnitude of the minimum wall shear and shift 
its streamwise location slightly upstream. An increase in the magnitude of the wall 
shear minimum also occurs as the wall is cooled for supercritical boundary layers, 
but in this case the minimum is shifted downstream instead. 

Wall cooling has an even more pronounced effect on cases involving separation. It 
may be noted that for every subcritical case considered where separation occurred, 
the solution became unstable in the form of a wave packet which remained stationary 
near the corner as described in Cassel et al. (1995). This is reflected in figures 3(b), 
4(b),  5(b) and 6(b), where z, is positive for all x in every case involving subcritical flow 
in which a stable steady solution was obtained. In contrast, many supercritical cases 
involving separation remained stable, but wall cooling had a significant effect upon the 
flow nevertheless. As indicated by the wall shear distribution (figures 3b, 4b, 5b and 
6b), separation persists for even relatively high values of wall cooling. An additional 
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FIGURE 6. As figure 2 but for cx = 5.0; S 9  = -20.0, ..., 32.5 in increments of 2.5 
(cases not shown were unstable). 

feature is that an abrupt drop in wall shear occurs from the upstream value to zero 
at separation; this drop steepens, moves downstream and occurs over a much shorter 
streamwise distance as the wall cooling is progressively increased. This sharp, and 
almost discontinuous, behaviour in wall shear was predicted in the strong wall cooling 
theory of Kerimbekov et al. (1994) and is believed to be the cause of the oscillations 
observed in the numerical solutions immediately upstream of the separation point for 
large ramp angles (see figures 5b and 6b). This behaviour is not believed to be due to 
an instability because of the streamwise locations where it occurs (well upstream of 
the corner) and the fact that the amplitudes of the oscillations do not grow with time. 
Rather, the oscillations are believed to be a numerical consequence of the apparent 
development of a jump discontinuity in the slope of the wall shear distribution at the 
upstream limit of influence of the compressive disturbance. Reductions in the spatial 
mesh resulted in smaller-scale oscillations of comparable magnitude. 
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FIGURE 7. Streamlines for t( = 3.0 as the wall is progressively cooled for supercritical flow. 
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(a)  S Y  = -2.5, ( b )  SLY = -5.0, (c) SLY = -7.5. 



The influence of'wall cooling on hypersonic boundary-layer separation and stability 207 

60 

40 

y 

20 

0 

60 

40 

Y 

20 

0 

Y 

60 

40 

20 

n 
-60 ~ 40 - 20 0 10 

X 

FIGURE 8. Streamlines for (Y = 5.0 as the wall is progressively cooled for supercritical flow. 
(a) S 9  = -5.0, (b)  S ' 9  = -10.0, (c) S 9  = -15.0. 
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FIGURE 9. Streamlines for tl = 4 and S 9  = -12.5 

The effects of supercritical wall cooling on the recirculating region itself are dis- 
played in the results for pressure and wall shear in figures 3-6 and the streamline plots 
shown in figures 7-9. The primary features observed are a progressive downstream 
shift in the point of separation toward the corner and an overall reduction in the 
streamwise and normal extents of the recirculating-flow region. Indeed, for all ramp 
angles considered where separation occurs in the non-cold wall case (a  = 2.0, 3.0, 
4.0 and 5.0), separation was ultimately eliminated by sufficient wall cooling. Figures 
5a and 6a also show that increased wall cooling decreases the value of the pressure 
plateau in the region of recirculating flow. Comparison of figure 7 for a = 3.0 with 
figure 4 of Cassel et al. (1995) for the non-cold wall case shows the effects of wall 
cooling on the streamlines. Without wall cooling, the flow passes smoothly over the 
recirculating-flow region; however, with wall cooling, the streamlines experience an 
increasingly abrupt change in direction just upstream of separation as the wall cool- 
ing is increased until separation is completely suppressed and the streamlines again 
become smooth. This is also shown in the streamline plots of figure 8 for a series of 
cases with a = 5.0. In addition, figure 8 shows that for relatively high ramp angles, 
there is a dramatic thinning of the recirculation zone downstream of the corner as the 
wall is cooled, but at the same time there is little change in the streamwise location 
of reattachment. Note that figure 8(a) shows the streamlines for a case involving 
secondary separation at the corner in which a small recirculating-flow region forms 
within the primary reversed-flow region. Observe that the streamlines in the primary 
recirculating-flow region rise abruptly as they pass over the secondary separation. 
This secondary separation is eliminated as the wall cooling is increased, in the same 
way that the primary reversed-flow region vanishes. It may be noted that as the level 
of wall cooling is increased, the separation region thins and moves up onto the ramp 
for a given value of a. This phenomenon is illustrated in figure 9, where the stream- 
lines for an example with CI = 4.0 and S d p  = -12.5 are shown; here the separation 
point is located on the ramp downstream of the corner, and the recirculating flow is 
completely contained on the ramp. This trend is consistent with the theory of strong 
wall cooling of supercritical boundary layers described by Kerimbekov et al. (1994). 
Many other cases were found to have separation occurring downstream of the corner, 
but as observed in figure 9, the recirculating flow region becomes very thin, and it 
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FIGURE 10. Summary of separation and stability characteristics for flows computed with various 

ramp angles r and levels of wall cooling S 9 .  

is progressively more difficult to plot the separation streamline as the wall cooling is 
increased. 

The separation and stability characteristics of all the cases shown in this work 
and Cassel et al. (1995) are summarized in figure 10. The non-cold wall results of 
Cassel et al. (1995) are shown along the line S 2  = 0, while wall cooling cases in the 
supercritical and subcritical regimes are shown for SLY < 0 and S 2  > 0, respectively. 
As discussed by Cassel et al. (1995), separation occurs in cases without wall cooling 
for a 3 1.9 and becomes unstable for a 3 3.9. It may be observed from figure 10 that 
as the ramp angle is increased, a progressively larger range of S 2  (both subcritical 
and supercritical) exists for which separation occurs. However, for both subcritical 
and supercritical boundary layers, separation is eliminated with sufficient wall cooling 
(at least for x < 5.0). Wall cooling in a supercritical boundary layer appears to 
be more effective in suppressing separation. For example, for a = 5.0 separation is 
eliminated for S 2  < -20.0 in the supercritical regime but values of SLY 2 27.5 are 
required in the subcritical regime. 

The effect of wall cooling on stability is more dramatic. For supercritical boundary 
layers, wall cooling has a strong stabilizing effect while for subcritical boundary 
layers, it is strongly destabilizing. From figure 10 it can be seen that all supercritical 
cases computed remained stable; in contrast, all subcritical cases involving separation 
became unstable, and those where separation did not occur remained stable. The 
stabilizing effect of wall cooling on supercritical boundary layers in two-dimensional 
flow has been observed experimentally by Lewis et al. (1968) who considered the 
supersonic flow over compression ramps; the same effect is also discussed in the 
review by Stetson & Kimmel (1992) of the stability characteristics of hypersonic 
boundary layers. 

Next it is of interest to confirm the scalings (3.2) of Kerimbekov et al. (1994) for the 
strong wall cooling case. This was carried out here through comparison of the present 
results for S 191 large, but O(l), with the theoretical results of Kerimbekov et al. 
(1994). Recall from equations ( 3 . 2 ~ )  and (3.2e) that the strong wall cooling variables 
are related to the current variables by X = N-'I4x, p = N-'12p and h = N-'I2a, 
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Ramp angle Subcritical Supercritical 
% S Y  SLY 

1 .o 10.0 -10.0 
2.0 10.0 -10.0 
3.0 15.0 -10.0 
4.0 22.5 -15.0 
5.0 30.0 -20.0 

TABLE 1. Wall cooling values S Y  used with subcritical and supercritical regimes for each ramp 
angle c( for comparison in figure 11 of numerical results with the strong wall cooling theory of 
Kerimbekov et nl. (1994). 

respectively. For N = [S /Y1]4’3 + 1, the leading-order pressure distribution for the 
compression ramp is given by equations (3.9) and (3.10) for the supercritical and 
subcritical cases, respectively. In order to compare the numerical results obtained 
here with these analytical results, the computed pressure distributions for a = 1.0, 2.0, 
3.0, 4.0 and 5.0 for both the subcritical and supercritical cases were replotted in terms 
of the scaled variables and compared with the analytical results. Note that since the 
scales for p and are the same, the pressure distributions defined by equations (3.9) 
and (3.10) are the same in terms of p and a. For each ramp angle, the subcritical 
and supercritical case computed with the largest level of wall cooling (see figure 10) 
was scaled in terms of X and compared to the analytical results (3.9) and (3.10). 
The wall cooling parameters used for each ramp angle are shown in table 1, and 
the comparisons are shown in figure 1 l(a) for the subcritical regime and figure (1 lb) 
for the supercritical regime. Observe that the agreement is very good even for the 
relatively small values of S 191 used in the numerical calculations (see table 1). Note 
that the small discrepancies near 5 = 0 are associated with the slight rounding of the 
corner used in the numerical calculations. 

In addition to the above comparisons of the pressure distributions, a series of 
calculations were carried out for the supercritical case in order to determine when 
separation first appears as S 121 is increased. This was done by determining the ramp 
angle a. and streamwise location xo at which separation first appears for various levels 
of wall cooling. For each value of -SLY in increments of 5.0, a series of calculations 
were carried out with increasing values of the ramp angle IX until a small separation 
bubble first formed on the surface. This ramp angle a0 and the streamwise location 
xo at which it occurs for each value of - S 9  is shown in figure 12. These results 
were obtained on meshes defined by I = 201, J = 101, a = b = 10.0 for S 131 ,< 30.0 
and a = b = 20.0 for S 191 2 35.0. An expanded mesh was used for higher levels 
of wall cooling because as - S 3  is increased, separation moves downstream and 
greater resolution is necessary in regions remote from the corner. As the degree of 
wall cooling is increased, figure 12 shows that the critical ramp angle required for 
separation increases. In addition, the streamwise location where separation appears 
moves well downstream of the corner as predicted by the theory of Kerimbekov et 
al. (1994). This procedure was terminated at S 9  = -45.0 because as separation 
moves downstream of the corner for increased wall cooling, it becomes increasingly 
difficult to obtain accurate numerical solutions using the present algorithm, which 
packs points near the corner at the expense of resolution upstream and downstream. 

The results of Kerimbekov et al. (1994) show that for N + 1, the critical ramp angle 
and the location at which separation first occurs in terms of the scaled variables 
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FIGURE 11. Comparison of pressure distributions from numerical results (- ) for cases given in table 
1 with analytical results ( -  - - -) for the strong wall cooling case. ( u )  Subcritical boundary layer, ( b )  
supercritical boundary layer. 

(3.2) are EO = 0.7548 and 30 = 0.5, respectively. In order to confirm these values, 
the incipient separation results shown in figure 12 are presented in figure 13 in terms 
of the scaled variables ti and 3. Again, accurate results for larger values of - S T  
could not be obtained from the present algorithm, and it is evident from figure 13h 
that the results for xo when S P  = -45.0 may be questionable. However, as S 191 
increases, it does appear that the numerical results for 80 and XO are tending to the 
critical values for large N determined by Kerimbekov et al. (1994). Therefore, the 
present numerical investigation appears to confirm the scalings (3.2) for the strong 
wall cooling case. Particularly strong evidence of this is given by the comparisons of 
the pressure distributions in figures 1 l(a) and 1 l(h) .  
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FIGURE 12. Critical ramp angle NO at which incipient separation of a supercritical boundary layer 

occurs for various values of wall cooling and the streamwise location xo where it appears. 
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FIGURE 13. Incipient separation results for figure 12 shown in terms of strong wall cooling variables; 
critical values from Kerimbekov et al. (1994) are shown for comparison. (a) Critical ramp angle 30 
at which separation first occurs, (b)  streamwise location Zo where incipent separation appears. 
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7. Discussion 
A general algorithm has been implemented for calculation of the hypersonic triple 

deck on a cold wall. The algorithm applies for general surface shapes on the triple- 
deck scale, but it has been used here to compute the flow over the compression 
ramp geometry with various reduced ramp angles x and levels of wall cooling S 2 .  
Available steady-state solutions were calculated as the large-time limit of unsteady 
calculations. 

Tutty & Cowley (1986) show that for the non-cold wall case (or equivalently the 
supersonic case), Rayleigh’s and Fjmtoft’s criteria are necessary conditions for a high- 
wavenumber instability. For the cold wall case, however, no analogous conditions 
could be determined which were particularly useful in identifying an instability. A 
linear stability analysis does produce a stability condition which provides a necessary 
and sufficient criterion for the occurrence of a high-wavenumber inviscid instability 
for cases both with and without wall cooling, but this condition proved difficult to 
evaluate accurately for the flow over the compression ramp (see Cassel et al. 1995). 

Numerical solutions were determined for various ramp angles without wall cooling 
( S 2  = 0) by Cassel et al. (1995), and separation was found to occur near the corner 
for ramp angles T X  3 1.9 for the slightly rounded corner geometry used here. The 
recirculating-flow region grows in streamwise and normal extent, and a pressure 
plateau forms in the pressure distribution as the ramp angle is increased beyond this 
value. For ramp angles with c( 3 3.9, a high-frequency instability develops in the 
form of a wave packet which remains stationary near the corner once sufficiently 
refined grids were used. The instability has high frequencies and short wavelengths, 
and for this reason it is highly mesh dependent. In addition, the occurrence of this 
instability in the numerical computations was shown to be consistent with Rayleigh’s 
and Fjmtoft’s criteria. 

Here, wall cooling was found to have a significant effect upon both the separation 
and stability characteristics of the flow. Wall cooling of subcritical boundary layers 
has a strong destabilizing effect, while for supercritical flows, it has a strong stabilizing 
effect. In fact, every case considered involving supercritical boundary layers for the 
ramp angles investigated (up to x = 5.0) remained stable. On the other hand, every 
case computed with subcritical flow which involved separation became unstable, while 
those without separation remained stable. 

The location and extent of the recirculating flow is also affected significantly by 
wall cooling, and sufficient wall cooling of both subcritical and supercritical boundary 
layers can eliminate separation altogether. For the supercritical cases, increasing the 
level of wall cooling reduces the size of the recirculating-flow region, shifts the 
separation point downstream, and generally reduces upstream influence. Conversely, 
wall cooling of subcritical flows reduces downstream influence; these trends continue 
until, in the limit of large Neiland number N ,  no disturbances associated with the 
ramp are permitted upstream of the corner for supercritical flow or downstream of 
the corner for subcritical flow. 

Finally, the present results verify the strong wall cooling theory of Kerimbekov et 
al. (1994) which is valid for large N .  The pressure distributions obtained numerically 
for large but finite Sly1 compared well (even for relatively small S / 2 / )  with the 
analytical results valid for N ---f c/3 for the leading-order pressure in both the subcritical 
and supercritical cases. In addition, good agreement was found with the incipient 
separation results of Kerimbekov et al. (1994) for the supercritical case. As 4 2  
is increased, it was shown that the ramp angle at which separation first occurs also 
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increases, and the separation point moves well downstream of the corner. When 
scaled according to the strong wall cooling variables, the present results tend toward 
the critical values determined by Kerimbekov et at. (1994) in the limit - S 2  -+ co. 
Therefore, the present results provide a smooth bridge from the classical supersonic 
(and hypersonic) triple-deck problem to the strongly cooled wall results of Kerimbekov 
et a/. (1994). 
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Appendix A 
The present study is based on the original approach of Neiland (1973) and differs 

in some respects from the more recent formulation of Brown et al. (1990) who, for 
example, use the Dorodnitsyn variable to measure a density-weighted normal distance 
from the wall. As noted by Brown et al. (1990), some aspects of the two approaches 
are not easily compared. Nevertheless, a brief comparison of some important features 
is given here. 

Brown et al. (1990) derive an interaction law of the form p = -o(dA/& + v a p / d x ) ,  
which is a relation also developed by Brown, Stewartson & Williams (1975) somewhat 
after the interaction relation (2.9) was given by Neiland (1973). If y = f ( x )  denotes 
the wall contour, the form of the interaction law after a Prandtl transposition is 

p = - - 0  - + - + v -  , (: :: 2)  
which is clearly similar to equation (2.9). In equation (A l), (r and v are parameters 
which Brown et al. (1990) show satisfy the relation 

4n+2 

v 4 0 =  (5) , 
/ ' W /  

where T,  is the wall temperature, and 3"; is a characteristic temperature which is 
O(x"("+*)) ; both theories agree that the important characteristic temperature has 
this order of magnitude. The triple-deck problem formulated by Brown et af. (1990) 
contains five parameters (including 5 and v ) ,  but since there are only four connecting 
relations, they argue that one parameter may be specified arbitrarily. Brown et al. 
(1990) first set 0 = 1 and identify two situations for which v <. 1 and v = O(1). For 
0 = 1 the two interaction laws (A 1) and (2.9) are identical if v = - S T .  Note that 
although Brown et al. (1990) consider only the case v > 0, Neiland (1973) (see also 
Kerimbekov et al. 1994) has shown that S > 0, while 9 may be either negative or 
positive, corresponding to the present definitions of supercritical and subcritical flow, 
respectively. Brown et a/. (1990) refer to the cases v Q 1 and v = O( 1) as supercritical 
and transcritical, respectively; these cases have been described here as temperature 
regimes 1 and 2, corresponding to moderate wall temperatures and moderate wall 
cooling, respectively. The former situation is described by the classical Ackeret 
interaction law, while the latter case is characterized by a significant contribution in 
the interaction law (2.9) or (A 1) due to the main deck. 

Calculations were carried out in the present study for the same parameters consid- 
ered by Brown et a/. (1990) in regime 2 for compression ramp flow and essentially the 
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same results were obtained. It is worthwhile to note that the numerical techniques in 
both studies are substantially different. Brown et al. (1990) assume that the motion in 
the interaction region is steady and do not investigate the question of stability. Their 
numerical method employs an iterative solution of the steady equations and requires 
the inversion of large matrices associated with the finite difference approximations; 
this approach necessarily places significant restrictions on the number of mesh points 
that can be used. In contrast, the time-dependent evolution of the flow was of interest 
in the present study, and possible steady solutions were sought as the potential limit 
of an unsteady calculation. Because the numerical method does not involve the 
inversion of large matrices, calculations could be carried out on grids that are more 
highly refined than in previous studies. The results show that, depending on the value 
of S , Y  and the scaled ramp angle a, the flow may be either stable or unstable. For 
stable flows, the solutions approach those of Brown et al. (1990). 

It is the strong wall cooling case (regime 3) where the two theories disagree. In 
this situation. the right-side of equation (A2)  becomes large but, as Brown et al. 
(1990) discuss. their expansions become disordered in the limit process 0 = 1, v -+ 00. 
Instead they consider the limit process v = 1 and o -+ a. However there is a difficulty 
with the latter limit since calculated values of the pressure do not approach a plateau 
downstream (see Appendix B of Kerimbekov et al. 1994 for an explanantion). In 
contrast, the present solutions exhibit the proper behaviour as S191 becomes large and 
blend smoothly into the analytical results obtained in the limit N = (S121)4’3 ---f co 
by Kerimbekov et al. (1994). 
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